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  A BSTRACT  
 Multiple outputs or measurement types are commonly gath-
ered in biological experiments. Often, these experiments are 
expensive (such as clinical drug trials) or require careful 
design to achieve the desired information content. Optimal 
experimental design protocols could help alleviate the cost 
and increase the accuracy of these experiments. In general, 
optimal design techniques ignore between-individual vari-
ability, but even work that incorporates it (population opti-
mal design) has treated simultaneous multiple output 
experiments separately by computing the optimal design 
sequentially, fi rst fi nding the optimal design for one output 
(eg, a pharmacokinetic [PK] measurement) and then deter-
mining the design for the second output (eg, a pharmacody-
namic [PD] measurement). Theoretically, this procedure 
can lead to biased and imprecise results when the second 
model parameters are also included in the fi rst model (as in 
PK-PD models). We present methods and tools for simulta-
neous population D-optimal experimental designs, which 
simultaneously compute the design of multiple output 
experiments, allowing for correlation between model 
parameters. We then apply these methods to simulated PK-
PD experiments. We compare the new simultaneous designs 
to sequential designs that fi rst compute the PK design, fi x 
the PK parameters, and then compute the PD design in an 
experiment. We fi nd that both population designs yield sim-
ilar results in designs for low sample number experiments, 
with simultaneous designs being possibly superior in situa-
tions in which the number of samples is unevenly distrib-
uted between outputs. Simultaneous population D-optimality 
is a potentially useful tool in the emerging fi eld of experi-
mental design.  

   K EYWORDS:     pharmacokinetics  ,   pharmacodynamics  ,   D-op-
ti   mality  ,   estimator  ,   bias  ,   precision  ,   experiment design    

   INTRODUCTION 
 Pharmacokinetic and pharmacodynamic (PK-PD) modeling 
techniques have become an indispensable tool in drug 
development. PK-PD modeling is used both to determine 
how a drug is absorbed, distributed, metabolized, and 
excreted in an animal or human (PK modeling) and to iden-
tify the primary in vivo properties of a drug such that the 
magnitude and time course of the  response  to that drug can 
be predicted under normal and pathological conditions (PD 
modeling). 1  ,  2  Over the past decade, PK-PD modeling has 
gone from a mostly empirical pursuit to a mechanistically 
based predictive discipline that has been employed in nearly 
all aspects of drug development. 3  The Food and Drug 
Administration (FDA) has recognized this development and 
in 1997 and 1998 released guidelines that strongly encour-
age the use of PK-PD information to facilitate the approval 
of new drugs based on fewer clinical trials and more 
advanced analysis of those trials. 4  ,  5  

 However, if we are to use fewer clinical trials to approve 
drugs, the quality of these trials must improve. The pres-
ent methods of designing clinical trials often result in 
experiments that have unreliable or inaccurate results, 6  
requiring the trials to be rerun and increasing costs and 
time for development. Recent studies have found that 
research and development costs associated with FDA 
approval of a drug are between $500 million and $802 
million and development time is roughly 10 to 12 years. 7  ,  8  
As a result, the fi eld of optimal experimental design has 
emerged to try and understand the important aspects of 
clinical trial design, and to then optimize those infl uential 
factors. One of the many infl uential aspects of clinical 
trial design is effective sampling. That is, determining 
when samples are collected, how many samples are col-
lected, and, in the case of population models, from how 
many individuals the samples are collected. Studies have 
demonstrated that the accuracy of mixed-effect model (the 
type of models used in PK-PD experiments) parameter 
estimates is highly dependent on these sampling ques-
tions, 6  ,  9  and it is this aspect of clinical trial design that we 
explore in this study. 

 Most methods of optimal design are based on the Fisher 
information matrix (FIM), which provides an asymptotic 
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lower bound on the covariance matrix of the estimated 
model parameters. 10  In the most common of these 
approaches, so-called D-optimal design, the determinant of 
the inverse of the FIM is minimized based on the variables 
of an experimental design. 11  One of the main problems with 
optimal design of population experiments is that the FIM is 
often very diffi cult and time consuming to calculate. As a 
result, various simplifi cations are made to the FIM. The 
most popular simplifi cation has been to design population 
studies by developing a D-optimal design for an individual 
study (ie, no between-subject variability is considered in 
the design), and then applying that design to each individual 
in a population study (where between-subject variability is 
present). 12  This standard D-optimal design approach is 
computationally tractable; however, because it does not 
take into account between-subject variability, its designs 
can be, in some sense, suboptimal, particularly if knowl-
edge of between-subject variability is important (eg, to 
determine likely ranges of drug safety and toxicity in a 
population). 13  

 More recent studies have investigated D-optimal design 
strategies that incorporate between-subject variability 
into the experimental design and focus on estimating 
 population distributions of parameters rather than indi-

vidual values. 14-17  These population D-optimal design 
strategies are algorithmically more intensive than stan-
dard D-optimal design strategies and require additional 
information for computation (between-subject variability 
information). 

 However, in all of these studies the approach has been to 
compute designs for single output experiments. As such, 
all multiple output experimental design calculations (such 
as in PK-PD experiments) have been approximated by a 
set of either individual or population sequential single out-
put experiments. 18  These single-output designs are then 
merged into a multiple output PK-PD experimental design. 
This approach could be considered the optimal design 
equivalent of a sequential population PD-PD analysis. As 
with sequential analysis, there are 2 main theoretical prob-
lems with sequential optimal design. First, because of the 
hierarchical nature of the PK-PD models, some PK param-
eters are found in the PD models. In sequential analysis, 
by fi xing the PK parameters before estimating the PD 
parameters, the PD parameter estimates and standard 
errors may be unrealistically good (because the error of 
the PK parameters is not properly accounted for) and the 
PK parameters unrealistically bad (because the PD data 
contain information about the PK model). 19  In sequential 

  Table 1.        Design Protocols for Model 1, A Mono-exponential PK, No Effect Site and Emax PD Model*     

   Number of PK Number of PD
 Samples per  Samples per 
 Individual Individual
Protocol (     n   p  k        ) (     n   p  d        ) Design Type

      n   p  k        -     n   p  d        - Sim  1-2    1-3    Simultaneous population 
     D-optimal  
      n   p  k        -     n   p  d        - Seq  1-2    1-3    Sequential population 
     D-optimal  
 2-3-Std    2    3    Sequential standard 
     D-optimal (       b   →     i    =   0      )   

    *PK indicates pharmacokinetic and PD, pharmacodynamic.    

  Table 2.        Design Protocols for Model 2: A Mono-exponential PK Linked to an Emax PD Model via a First-order Effect Site*     

    Number of Number of
  PK Samples PD Samples 
  per Individual per Individual
Protocol (     n   p  k        ) (     n   p  d        ) Design Type

      n   p  k        -     n   p  d        - Sim  1-2    1-6    Simultaneous population 
     D-optimal  
      n   p  k        -     n   p  d        - Seq  1-2    1-6    Sequential population 
     D-optimal  
 2-6-Std     2   4-6    Sequential standard 
     D-optimal (       b   →     i    =   0      )   

    *PK indicates pharmacokinetic and PD, pharmacodynamic.    
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optimal design, the same problem occurs; by fi xing the PK 
parameters, the optimized PD designs will not allow for 
optimal PK parameter estimation, while the PK designs 
will not assume information can come from the PD mea-
surements. The second theoretical problem with sequen-
tial optimal design is that, by separating each type of 
measurement and then calculating separate designs, esti-
mate correlations between the model parameters describ-
ing different measurement types are not incorporated into 
the optimality measure. 
 At present, simultaneous population PK-PD modeling is 
routinely being used (for example, see Danhof et al 20 ). Just 
as sequential analysis is an approximation to the  “ gold stan-
dard ”  of sequential analysis, 19  sequential optimal design is 
an approximation to the  “ gold standard ”  of simultaneous 
optimal design. In addition, it seems to make theoretical 
sense to optimize an experiment in the same manner that it 
is analyzed. As such, we would like to explore and compare 
the effects of using simultaneous and sequential optimal 
design techniques in various situations. 
 In this study, we present a novel way of looking at optimal 
design by creating a design strategy based on multiple mea-
surement population PK-PD models. Specifi cally, we investi-
gate  simultaneous  population D-optimal designs of PK-PD 

experiments. To do this, we use 4 multiple-measurement PK-
PD models to compare our novel simultaneous population 
D-optimal designs (SIM) with both population (SEQ) and 
standard (STD) sequential D-optimal designs (non-popula-
tion-based). We evaluate these various design strategies 
through examination of the asymptotically predicted variances 
in the FIMs and through simulation/estimation experiments.  

  BACKGROUND 
 The main concepts of population modeling and optimal 
design theory have been widely discussed. 16  ,  21-23  In this 
study, we follow the same notation as in our previous work, 24  
the implementation of which has been elucidated in Forac-
chia et al. 25  However, in this work we are considering PK-
PD experiments, which entail more complexity than single 
output experiments. We focus on this added complexity in 
this section. 

  Population Models 
For a specifi c measurement type in the system (ie, the 
PK and PD measurements) we denote as        y   →     i        the vector of    n      
 measurements for individual 
 �yi = f (�xi , �βi) + �εi, �εi ∼ N(0, Ri (�xi, �βi )), (1)

  Table 3.        Design Protocols for Model 3: A 2-compartment PK Model With No Effect Site and an Emax PD Model*     

    Number of Number of
  PK Samples Samplesper  
  per Individual Individual
Protocol (     n   p  k        ) (     n   p  d        ) PD Design Type

      n   p  k        -     n   p  d        -Sim    1-4    1-3    Simultaneous population 
    D-optimal  
      n   p  k        -     n   p  d        -Seq    1-4    1-3    Sequential population 
    D-optimal  
 4-3-Std    4    3    Sequential standard 
    D-optimal (       b   →     I    =   0      )  
    *PK indicates pharmacokinetic and PD, pharmacodynamic.    

  Table 4.        Design Protocols for Model 4: for the Oral Dosing of Theophylline* 

       Number of Number of
 PK Samples PD Samples 
 per Individual per Individual
Protocol (     n   p  k        ) (     n   p  d        ) Design Type

      n   p  k        -     n   p  d        - Sim  1-3    1-6    Simultaneous population 
     D-optimal  
      n   p  k        -     n   p  d        - Seq  1-3    1-6    Sequential population 
     D-optimal  
 3-6-Std    3   6    Sequential standard 
     D-optimal (       b   →     i    =   0      )    
   *PK indicates pharmacokinetic and PD, pharmacodynamic.    
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  where         �    →     i        is the measurement error, f (�xi , �βi) is a generic 
model,        x   →     i        are the experimental variables (eg, sample times), 
and         �    

→
     i        are the parameters (eg, rate constants and volumes of 

distribution) of the model. We assume that Ri (�xi , �βi) is 
diagonal but not necessarily homoscedastic and, as usual, 
we assume that the model parameters comprise fi xed effects 
( �βpop), random effects (       b   

→
     i       ), and covariates �ai

 �βi = g( �βpop, �bi, �ai ), �bi ∼ N(0, D). (2)

In addition, we assume the variance of the random effects, 
    D      , form a diagonal matrix and thus all random effects are 
independent from one another and from the variance of the 
measurement error,       R   i       . 

  Optimal Design Theory 
The Cramer-Rao inequality 26  tells us that the covariance of 
a models ’  fi tted parameters is greater than, and asymptoti-
cally approaches, the inverse of the FIM

 Cov �̂θ ≥ (FIM)−1. (3)

The FIM is defi ned as

 FIM = E �y

[(
∂

∂ �θ L(�θ)

)T ∂

∂ �θ L(�θ)

]
 (4)

 where E �y [ ] indicates the expectation with respect to all 
the data in the population experiment �y  and L(�θ) is the 
log-likelihood of the observations given the population pa -
rameters �θ . This then gives us a way to compute our 
optimal designs; by minimizing the inverse of the FIM we 
minimize the asymptotic lower bound for our estimated 
model parameters. 
Practically, the minimization of the inverse of the FIM is 
done by reducing the matrix to a scalar in some manner and 
then extremizing that scalar quantity. In this work we use 
the most common scalarization called D-optimality (which 
we denote as      J  D       ). In D-optimality we fi x �θ  to our best esti-
mate of the model parameters, �θ        B  e  s  t        .

  Figure 1.       Sampling times for each design considered in Model 1. For each design, all sample times from all individuals are plotted 
together on one line. The left fi gure shows the PK sample times and the right fi gure shows the PD sample times. ( � )- STD SEQ 
optimal times, (*)- SEQ population optimal times, (•)- SIM population optimal times. The population model mean PK and PD 
response curves are shown above their respective sampling times. The designs are shown to be similar for all design methods.   
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Then, we minimize the determinant of the inverse of the 
FIM with respect to the design parameters, or, equivalently, 
maximize the determinant of the FIM, 16 

 Max �x [JD] = Max �x
[

Det
(

FIM
(
�x, �θBest

))]
.  (5)

One drawback of this optimization method is that all model 
parameters are considered equally important to estimate 
accurately. It is easy to imagine scenarios where one param-
eter may be more important than another to estimate accu-
rately. The FIM could be optimized in such situations 
using, for example, the DS-optimality criterion used 
in other contexts (eg, in Solkner). 27  This criterion has 
been mentioned recently in the context of PK-PD 
experiments. 28  

  Computation of the Population Fisher 
Information Matrix 
The key to optimal design is the computation and optimiza-
tion of the FIM. To compute the FIM we use Equation 2. 
However, because most of the models used in these compu-
tations are nonlinear with respect to their parameters, an 
analytical expression for the log-likelihood is not feasible. 
However, by linearizing the model about the expectation of 
the random effects parameters        b   

→
      j  ,  i     =   0      , we can compute the 

log-likelihood of the model and thus derive an expression 
for the population  FIM  based on the individual  FIM  i  25 :

 
FIM(�θ) =

m∑
i=1

FIMi (�θ)

=
m∑

i=1

[
M1i 0
M2i M3i

]T [
V ar(�yi )

−1 0
0 M−1

4i

]

×
[

M1i 0
M2i M3i

]
 (6)

where

 

 (7)

  Figure 2.    CVs for the SIM, SEQ, and STD 2 pk  - 3 pd  designs 
considered in Model 1. Differences are evident for the 3 fi xed 
effects of the PD model.   

  Figure 3.       CVs for the SIM and SEQ population designs 
considered in Model 1. Differences are clear for the 3 fi xed 
effects of the PD model. (*)- SEQ population optimal designs, 
(•)- SIM population optimal designs.   
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 This grouping procedure not only reduces the size of the pop-
ulation FIM calculation but it also simplifi es the optimization 
of the FIM. For example, if we are optimizing over sample 
times, the number of optimization variables,      N   v  a  r  s        , is .

  Figure 4.    The percentage difference between the CVs predicted by the SIM and SEQ population optimal designs of Model 1, 
calculated as (CV sim  - CV seq )/CV seq . A negative value means the SIM design predicts a smaller CV. The top 2 plots show the PK 
parameter CV differences; the bottom 2 plots show the PD parameter CV differences.   

  Figure 5.    The number of simulation/estimation studies used to 
compare the various designs for Model 1. Two hundred simulations 
were attempted for all designs, but some parameter estimates were 
subsequently thrown out owing to numerical issues.   

and the operator     v  e  c  (  )       row vectorizes the matrix and   
V ar(�yi )  indicates the variance of the linearized model. 

  Grouping of Individuals in Population FIM Calculations 
Regrettably, the computation of the population FIM 
becomes burdensome rather quickly (especially during 
optimization, when numerous population FIM calculations 
are needed). We can mitigate this problem by grouping 
individuals with similar characteristics and assuming that 
they will all have the same experimental designs. 17  That is

 FIM
(
�x , �θ

)
=

m∑
i=1

FIMi

(
�xi , �θi

)

=
Ng∑

i=1

giFIMi

(
�xi , �θi

)
, (8)

where      N  g        is the number of groups that make up the 
population,      g  i        are the number of individuals in group i, and 

m =
Ng∑

i=1

gi.
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However, using the grouping procedure, Nvars = �
Ng

i=1ng,i , 
a savings of �Ng

i=1(gi − 1)ng,i  design points. This benefi t 
can be signifi cant if the number of individuals in an experi-
ment is large. Of course, this simplifi cation does reduce our 
ability to fi nd the global optimum to this problem, but the 
benefi ts in speed may outweigh the disadvantages. 
 We reported a specifi c example of the effects of this group-
ing procedure on the trial design results. 25  In this study, we 
compare a full design with a grouped design, where      N  g        was 
75% less than    m     . We found the grouping solution to be a 
good approximation to the total solution, with the determi-
nant of the FIM decreased by only 8% and the design points 
at nearly the same locations.  

  Sequential and Simultaneous Model Fitting 

 In general, there are 2 basic methods employed to the fi tting 
of PK-PD (or multiple-output) models: sequential (SEQ) 
fi tting and simultaneous (SIM) fi tting. In SEQ fi tting, the 
parameters used to describe one output are estimated fi rst. 
These parameters are then fi xed and assumed known in the 
fi tting of the other outputs. 

  Figure 6.    Box plots of parameter estimates for Model 1 using the design strategies outlined in  Table 1 . The dotted horizontal line is 
the true parameter value used in the simulations.   

The following is an example of a PK-PD experiment 
with 2 basic measurements. A set of data from the PK 
measurement vector,        y   →      1  ,  i        , is fit to an appropriate model

 �y1,i = f1
(
�x1,i , �β1,i

)
+ �ε1,i ,

�ε1,i ∼ N
(

0, R1,i

(
�x1,i , �β1,i

))
. (9)

The fi tted parameters of this model,           �
→
        
^
      1  ,  i        , are then fi xed to 

their fi tted values and these values are used in the model that 
describes the set of data from the PD measurement vector,

 

�y2,i = f2
(
�x2,i , �̂β1,i , �β2,i ,

)
+ �ε2,i ,

�ε2,i ∼ N
(

0, R2,i

(
�x2,i , �̂β1,i , �β2,i

))
. (10)

 By replacing actual parameter values with independently 
fi tted, fi xed parameter values, SEQ modeling attempts to 
mitigate the potential for attenuation bias in the estimation 
of the second measurement-type model parameters. 21  How-
ever, this fi tting method will often result in an unrealisti-
cally good estimate of the PD set of parameters, �̂β2,i, owing 
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measurement vectors         y →        j,i        are correlated in some way. To do 
this the probability density of the model is written as 30 

 p
(
�yi

∣∣�θ)
= p

(
�y1,i · · · �ymt,i

∣∣�θ1, · · · , �θmt

)
.  (12)

 When we use this method of SIM fi tting, we get a full co -
variance matrix covering all the parameters.  

  Multiple Measurement Population FIM Calculations 
 In optimal design, the computation of the population FIM 
for PK-PD experiments (experiments with multiple types of 
measurements) can also be approached either simultane-
ously or sequentially. All previous work has used SEQ opti-
mal design techniques in which the optimal design of the 
PK model is computed separately from the optimal design 
for the PD model. In this approach, any PK model parame-
ters that appear in the PD model ( �̂β1,i in Equations 9 and 
10) are assumed known. That is, the experiment is not 
designed to estimate those parameters. Again, the problem 
with this approach is that there is a built-in lack of correla-
tion between the PK and PD parameters in the design 
calculations. 
In SIM optimal design of PK-PD experiments, we use a full 
FIM with correlations between PK and PD parameters in 
our design calculations. These methods are similar to those 
presented by Draper and Hunter 31  for multiresponse situa-
tions. These computations are more complex than for exper-
iments with one measurement vector, but the theory does 
not change. That is, we can still use Equations 6 and 7; our 
model is just a bit more complicated. For each individual 
we have     m  t       different types of measurements in our 
experiment

 �yi =
[(�y1,i

)T
,
(�y2,i

)T
, · · · ,

(�ymt ,i
)T

]
. (13)

Each of these     m  t       measurement types is associated with a 
different model,      f  1   ,   f  2   ,   …   ,   f   m  t        , which we can group together to 
form a multiple measurement vector model

 
f
(
�xi , �βi

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1
(
�x1,i , �β1,i

)
f2

(
�x2,i , �β2,i

)
...

fmt

(
�xmt,i, �βmt,i

)
 (14)

 where  x 
→

     i =    
[(�x1,i

)T
, · · · ,

(�xmt,i
)T

]
 and �βi  contains all 

 pa    ra m  eters from all the measurement models (the same param -
eter appearing in 2 different models appears only once in         � 

→
        i       . 

 This multiple measurement PK-PD model can now be 
described by the typical population model equations (Equa-
tions 1 and 2). We note that       R   i        in Equation 1 now includes 

  Figure 7.    The percentage bias and RMSE for parameters in 
Model 1. Design methods are outlined in  Table 1 . (*)- SEQ 
population optimal designs, (•)- SIM population optimal designs.   

to the fi xed parameters and the resulting built-in lack of esti-
mate correlation between the 2 sets of parameters. 

In SIM modeling, the idea is to fi t all measurements at the 
same time to avoid biased secondary parameters. One 
method of SIM modeling assumes that there is no correla-
tion between the parameters associated with the different 
measurement vectors. This assumption allows us to easily 
write the probability density of the individual model output 
for all measurements        y   →          i         as a product of the probability den-
sities for each different measurement  vector    y   →             j,i       

 p
(
�yi

∣∣�θ)
=

mt∏
j=1

p
(
�y j,i

∣∣�θ j

)
, (11)

where     m  t       is the number of measurement vectors in the exper-
iment and �θ j  are each model ‘ s population parameters. 29 

A more complete (and more complex) method of SIM mod-
eling is to assume that all parameters �θ jj associated with all 
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the measurement variances      r  i        from both PK and PD mea-
surements in the experiment         y 

→
        i       . The vectors         � 

→
        pop,        �bi,             and       

�ai ,         in Equation 2 contain all values from both the PK and 
PD measurement models, with values repeated in both 
 models included only once in these vectors. Finally,     D       in 
Equation 2 now contains all random effect variances      d  i        from 
both measurement models (again if a parameter is included 
in 2 or more models it is included only once in     D      ). Using 
these expanded defi nitions we can now use Equations 6 

and 7 to calculate the SIM population FIM for PK-PD 
experiments.   

  METHODS 
 We begin this work by selecting 4 PK-PD models to use in 
our examination of sequential and simultaneous D-opti-
mal designs. We assume that these models correctly 
describe the underlying PK-PD process and that the val-
ues for the model parameters are the  “ true ”  values of the 

  Figure 8.       Sampling times for each design considered in Model 2. For each design, all sample times from all individuals are plotted 
together on one line. The left fi gure shows the PK sample times and the right fi gure shows the PD sample times. ( � )- SEQ STD 
optimal times, (*)- SEQ population optimal times, (•)- SIM population optimal times. The population model mean PK and PD 
response curves are shown above their respective sampling times.   
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parameters. Then, for each model, we calculate sequential 
non-population-based  “ standard ”  (STD) D-optimal 
designs, sequential (SEQ) population D-optimal designs, 
and simultaneous (SIM) population D-optimal designs. 
To compute the STD and SEQ D-optimal designs we use 
the software program PopED 25  (freely available from 
www.rfpk.washington.edu), which is written in the matrix-
based computing  environment O-Matrix (Harmonic Soft-
ware, Seattle, WA). To compute the novel SIM D-optimal 
designs we modifi ed the data structure in PopED to incor-
porate multiple models in the design calculations as 
described in the section  entitled  “ Multiple Measurement 
Population FIM Cal    culations. ”  

To compare these various designs, we fi rst examine the 
resultant asymptotic parameter coeffi cients of variation 
(CVs) that the optimal FIMs provide looking for differences 
between the various design techniques. We also compute 
the percentage difference between the parameter CVs pre-

dicted by the SIM and the SEQ population design tech-
niques as used by Retout and Mentré 28 

 CV Difference = CVsim − CVseq

CVseq
× 100 %.  (15)

 These percentage differences used in conjunction with the 
actual CV values can be used to better understand the differ-
ences between designs. 

If differences between the various designs are found, we 
investigate them further through the type of simulation 
studies performed in Hooker et al. 24  Briefl y, we simulate, 
using the software package NONMEM (Globomax, 
Hanover, MD), 200 replicate population PK data sets 
based on the D-optimal designs we calculated. That is, we 
use the same number of individuals, the same model 
parameter values, the same dosing strategy, etc, used to 
determine the optimal design and simulate data at the sam-
pling times  dictated by the optimal design calculations. 

  Figure 9.    Model 2 CVs for designs in which all 3 design methods (SIM, SEQ, and STD) are used. Differences are clear for the   �  pop5   
and   �  pop6   parameters.   
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From this  simulated data we then estimate (using the  “ fi rst-
order approximation ”  [FO] method in NONMEM) simul-
taneously the population PK-PD model parameters for 
each design and use these parameter estimates to compare 
the various designs. If NONMEM fails to converge, the 
estimates for that run are thrown out; the number of runs 
thrown out for each model is reported in our results. We 
compare the replicate estimated parameter values between 
designs by looking at box plots of the parameter estimates 
of each design, and then looking at the bias and root mean 
standard error (RMSE) of the parameter estimates. The 
bias can be used as a measure of the central tendency of 
the distribution of parameter estimates and is defi ned as 
follows 32 :

  (16)

where      N  e        is the number of realizations of the parameter θ̂k , 
which has a true value (used in the simulations) of 
      �    k   

(  T  R  U  E  )        . The RMSE can be used as a measure of the 
spread of the distribution of the parameter estimates and is 
defi ned as 32 

  (17)

 It is important to note that the bias and RMSE metrics may 
be sensitive to outlying estimates and may hide information 
about the parameters ’  distributions. As such, we examine 
both the box plots for these parameter estimates and their 
bias and RMSE metrics. 

  Model 1: Mono-exponential PK, No Effect Site, Emax PD 
 The fi rst PK-PD model we examine is a single compartment 
PK model with bolus input directly connected (ie, no effect 
compartment) to an Emax PD model. The model and its 
parameters come from Hashimoto and Sheiner. 33  This model 
is examined here because of its relative simplicity and its 
widely used structure, which makes it a good model with 
which to begin our investigations. 
 PK model:  We use a single compartment model with bolus 
input. For the      i   t  h         individual, we have

  (18)

 PD model:  To describe the PD characteristics we use an 
Emax model. The PD model is directly connected to the PK 
model. For the      i   t  h         individual, we have

  Figure 10.    CVs for the SIM and SEQ population designs considered in Model 2. Differences are seen for  d  1 ,  d  2 ,   �  pop5  , and   �  pop6  . 
(*)- SEQ population optimal designs, (•)- SIM population optimal designs.   
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Ei(�ti , �θ) = E0i + Emaxi Cpi (�ti, �θ)

C50,i + Cpi(�ti , �θ)
+ �εpd,i

Cpi(�ti , �θ) = Dosei

Vi
e
− Cli

Vi
�ti

�εpd,i ∼ N
(

0, α2
pd

)
E0i = βpop3 + b3,i

Emaxi = βpop4 + b4,i

C50,i = βpop5 + b5,i

�bi ∼ N(0, D)

 (19)

  Design specifi cs:  The design will have 6 groups of 20 sub-
jects each (as discussed in the section entitled  “ Grouping of 
Individuals in Population FIM Calculations ” ), a single dose 
of 1 mg, both PK and PD samples will be taken between 
zero and 1 hour, and model parameter values are 

 

�θ = [
βpop1 , βpop2 , βpop3, βpop4 , βpop5 ,

d1, d2, d3, d4, d5
]T

= [0.5, 0.2, 1.0, 1.0, 1.0,

0.01, 0.0016, 0.01, 0.09, 0.09]T

α2 = 0.15

α2
pd = 0.15.

 (20)

 The design protocols are shown in  Table 1 .    

  Model 2: Mono-exponential PK, Effect Site, Emax PD 
 With this model, we extend Model 1 and add an effect com-
partment between the PK and PD models. As with Model 1, 
Model 2 does not specifi cally relate to any one drug study, 
although the structure of the model is commonly used in 
 practice (see for example Colburn ’ s treatment of acetamino-
phen 34 ). We choose this model because it is a simple test case 

  Figure 11.    The percentage difference between the CVs predicted by the SIM and SEQ population optimal designs of Model 2. A 
negative value means the SIM design predicts a smaller CV. The top 2 plots show the PK parameter CV differences; the bottom 2 plots 
show the PD parameter CV differences.   
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for simultaneous optimal design of effect compartment PK-PD 
experiments (with some relevance to actual PK-PD studies). 

  PK model:  The PK model is the same as that for Model 1 
(Equation 18). 

 PD model:  The PD model is an Emax model connected to 
the PK model via a fi rst order effect compartment. For the 
     i   t  h         individual, we have

 Ei (�ti, �θ) = E0i + Emaxi Cei(�ti , �θ)

C50,i + Cei (�ti , �θ)
+ �εpd,i

Cei (�ti, �θ) = ke0,i Dosei

Vikeo,i − Cli

(
e
− Cli

Vi
�ti − e−keo,i �ti

)

�εpd,i ∼ N
(

0, α2
pd

)
E0i = βpop3 + b3,i

Emaxi = βpop4 + b4,i

C50,i = βpop5 + b5,i

keo,i = βpop6 + b6,i

�bi ∼ N(0, D)

 (21)

 Design specifi cs:  The design will have 6 groups of 20 sub-
jects each, a dose of 150 mg, samples for the PK measure-
ments will be between zero and 1 hour, samples for the PD 
measurements will be between zero and 60 hours, and 
parameter values are

 

�θ = [
βpop1 , βpop2, βpop3 , βpop4 , βpop5, βpop6 ,

d1, d2, d3, d4, d5, d6
]T

= [0.5, 0.2, 1.0, 1.0, 1.0, 0.1,

0.01, 0.0016, 0.01, 0.09, 0.09, 0.0001]T

α2 = 0.15

α2
pd = 0.15.

 (22)

 The design protocols are summarized in  Table 2 .    

  Model 3: Two-compartment PK, No Effect Site, Emax PD 
 In this example, we extend Model 1 by adding a second 
compartment to the PK model. This model and its parame-
ters also come from Hashimoto and Sheiner. 33  As with the 
previous 2 models, this model does not specifi cally relate to 

  Figure 12.    Box plots of parameter estimates for Model 2 using the design strategies outlined in  Table 2 . The dotted horizontal line is 
the true parameter value used in the simulations.   
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any specifi c study, although it is commonly used (see for 
example Mandema and Stanski ’ s treatment of ketorolac 35 ). 
  PK model:  The PK model is a 2-compartment model with 
bolus input. For the      i   t  h         individual, we have

yi (�ti, �θ) =
Dosei (

Cld,i
V2,i

− λ1,i )

V1,i(λ2,i−λ1,i )
e−λ1,i �ti

−
Dosei (

Cld,i
V2,i

− λ2,i )

V1,i(λ2,i−λ1,i )
e−λ2,i �ti(1+ �εi )(mg/L)

(23)λ1,i = 1

2

[
Cld,i

V1,i
+ Cl01,i

V1,i
+ Cld,i

V2,i

+
√(

Cld,i

V1,i
+ Cl01,i

V1,i
+ Cld,i

V2,i

)2

− 4Cld,i Cl01,i

V1,i V2,i

⎤
⎦

λ2,i = 1

2

[
Cld,i

V1,i
+ Cl01,i

V1,i
+ Cld,i

V2,i

−
√(

Cld,i

V1,i
+ Cl01,i

V1,i
+ Cld,i

V2,i

)2

− 4Cld,i Cl01,i

V1,i V2,i

⎤
⎦

(24)

εi ∼ N
(

0, α2
)

Cl01,i = βpop1 + b1,i (L/hr)

V1,i = βpop2 + b2,i (L)

V2,i = βpop3 + b3,i (L)

Cld,i = β pop4 + b4,i (L/hr)

�bi ∼ N(0, D)

    PD model:  We use an Emax model to describe the PD char-
acteristics. The PD model is directly connected to the PK 
model. For the      i   t  h         individual we have

 

Ei (�ti, �θ) = E0i + Emaxi Cpi (�ti, �θ)

C50,i + C pi (�ti, �θ)
+ �εpd,i

Cpi (�ti, �θ) =
Dosei

(
Cld,i
V2,i

− λ1,i

)
V1,i(λ2,i − λ1,i )

e−λ1,i �ti

−
Dosei

(
Cld,i
V2,i

− λ2,i

)
V1,i (λ2,i − λ1,i )

e−λ2,i �ti

�εpd,i ∼ N
(

0, α2
pd

)
E0i = βpop5 + b5,i

Emaxi = βpop6 + b6,i

C50,i = βpop7 + b7,i

�bi ∼N(0, D)

 (25)

  Figure 13.    The percentage bias and RMSE for parameters in 
Model 2. Design methods are outlined in  Table 2 . (*)- SEQ 
population optimal designs, (•)- SIM population optimal designs.   

 Design specifi cs:  The design will have 6 groups of 20 sub-
jects each, a dose of 1 mg, samples will be between zero and 
1 hour, and parameter values are

�θ = [
βpop1 , βpop2, βpop3 , βpop4 , βpop5, βpop6 , βpop7 ,

d1, d2, d3, d4, d5, d6, d7]T

= [0.6, 0.15, 0.15, 0.6, 1.0, 1.0, 1.0,

0.0144, 0.0009, 0.0009, 0.0144, 0.01, 0.09, 0.09]T

α2 = 0.15

α2
pd = 0.15.

 The design protocols are shown in  Table 3 .    

  Model 4: PK-PD for the Oral Dosing of Theophylline 
 In this model we describe the PK-PD for the oral dosing of 
theophylline, an anti-asthmatic agent. We choose this model 
because it affords us the opportunity to extend the results 

(26)
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  Figure 14.    Sampling times for each design considered in Model 3. For each design, all sample times from all individuals are plotted 
together on one line. The left fi gure shows the PK sample times and the right fi gure shows the PD sample times. ( � )- SEQ STD 
optimal times, (*)- SEQ population optimal times, (•)- SIM population optimal times. The population model mean PK and PD 
response curves are shown above their respective sampling times.   
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obtained in previous work 24  for the PK optimal designs of 
theophylline. In addition, the PD model described below is 
quite complex and has been used for real data, and, as such, 
it is a good test for the methods we have developed thus far. 
 PK model:  The PK for Model 4 is well described by a one-
compartment model with linear absorption and constant 
measurement error variance. We defi ne the model for the 
     i   t  h         individual as:

�Yi

(
�ti , �θ

)
= Dosei k21,i k02,i

Cli (k21,i − k02,i )

(
e−k02,i �ti − e−k21,i �ti

)
+ εi (mg/L)

εi ∼ N(0, α2) (mg/L)

k21,i = βpop1 eb1,i (hr−1)

k02,i = βpop2 eb2,i (hr−1)

Cli = aiβpop3 eb3,i (L/hr)

�bi ∼ N(0, D)

Dosei

ai
∈ [3.10, 5.86] (mg/kg)

 (27)

 where      a  i        is the weight of individual    i      and     C   l  i        is the clearance 
from the accessible compartment. The assumed true param-
eter values for this model are estimated using the FO method 
in NONMEM and the data set from Beal and Sheiner. 36  
 PD model:  The PD model we examine is taken from Holford 
et al. 37  This model describes the PD measurement of peak 
expiratory fl ow rate (PEFR) as a direct effect model (ie, they 
assume that the plasma is the effect site; thus there is no effect 
compartment). The model makes the assumption that the 
PEFR is infl uenced by both the theophylline concentration in 
the blood and a hypothetical broncho-constrictor factor (BCF). 
For an individual    i     , the effect of the BCF on the PEFR is

where       Bse   i        is the baseline PEFR for individual    i      during an 
asthma attack and       Nml   i        is the baseline PEFR for that individ-
ual in the normal state. The effect of theophylline on the 
PEFR is

 

(29)

The overall effect on PEFR is thus

 PEFRi
(�t, �θ) =

[
PEFRBC F,i

(�ti , �θ)
+αtheo,i PEFRT H E O,i

(�ti , �θ)]
× (1 + �εpd,i ) (L/min)

�εpd,i ∼ N
(
0, α2

pd

)
Bsei = βpop4

eb4,i (L/min)

Nmli = βpop5eb5,i (L/min)

T 50BC F,i = βpop6 eb6,i (1/min)

Cp50i = βpop7
eb7,i (mg/L)

αtheo,i = βpop8

h = βpop9

�bi ∼ N(0, D)

 (30)

 For more information on this interesting model please see 
Holford et al. 37  
  Design specifi cs:  The assumed true parameter values for 
this model are

�ϕ = [
βpop1 , βpop2 , βpop3 , βpop4, βpop5 , βpop6 , βpop7,

βpop8 , βpop9 , d1, d2, d3, d4, d5, d6, d7
]T

= [2.71, 0.0763, 0.0373, 133, 477, 16, 11, 0.518, 2.13,

0.784, 0.0185, 0.0428, 0.14444, 0.0484,

0.6561, 0.6084]T

α2 = 0.419

α2
pd = 0.04.

  Figure 15.    Model 3 CVs for the SIM, SEQ, and STD designs 
with 4 PK and 3 PD samples per individual. No major 
differences are evident.   

(28)

(31)
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  To be consistent with the design setup used in Beal and 
 Sheiner ’ s theophylline PK study, 36  we assume that there are 
12 individuals in the study with an oral dose of the drug at time 
zero. Each sample time for the PK model will be within 24 
hours of dosage, sample times for the PD model will be between 
zero and 1 week. The design protocols are shown in  Table 4 .     

  RESULTS 
  Model 1: Mono-exponential PK, No Effect Site, Emax PD 
  Optimal Designs 
 The computed optimal design sample times (for all individu-
als and for each design outlined in  Table 1 ) are shown in 
  Figure 1 . These conglomerated plots give a sense of how the 
design times are distributed. We see that there is relatively 
 little difference between the sampling times for the various 

designs, although there does appear to be a slight shift in sam-
pling times for the PD measurement at roughly 0.6 hours. 
Because all of the designs are quite similar, we expect there 
to be relatively little difference between the design results. In 
general the number of observations contained in each point of 
these plots is roughly equivalent within a design. For exam-
ple, in the 2-2-SIM design there appear to be 4 distinct sam-
pling times, with 2 PD samples per individual and 6 groups of 
20 subjects; each point in this design represents ~30 sampling 
times. This equivalence seems to hold roughly true for each 
model explored in this work. It would be interesting to see 
how these distributions change between designs, but we did 
not investigate this aspect of the design in detail here.   

  Figure 2  compares the asymptotic CVs for the      3   p  k        -     6   p  d         designs 
where all 3 design types could be used. The difference 

  Figure 16.    Model 3 CVs for the SIM, SEQ, and STD designs with 4 PK and 3 PD samples per individual. No major differences are 
evident.   
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  Figure 17.    The percentage difference between the CVs predicted by the SIM and SEQ population optimal designs of Model III. A 
negative value means the SIM design predicts a smaller CV. The top 2 plots show the PK parameter CV differences; the bottom 2 plots 
show the PD parameter CV differences.   

between the STD and SEQ designs are relatively minor, with 
the SIM designs predicting CVs for      a   p  o  p  3        ,       �    p  o  p  4        , and       �    p  o  p  5         that 
are smaller by roughly 20% to 25%.   
  Figure 3  shows the asymptotic CVs predicted by the optimal 
FIM for the SIM and SEQ population designs. The  pattern 
we would expect to see (and actually do see) in this fi gure is 
a general increase in CV for the PD parameters, as the 
designs move from 3 PD samples to 2 and then to 1 PD 
sample. Similarly, we expect to see an increase in the CV of 
the PK parameters as we move from designs with 2 PK sam-
ples to designs with 1 PK sample, and then a decrease as we 
go back to 2 samples. From this fi gure, we again see surpris-
ing improvements (given how similar the sample times are 
between the various designs) in the SIM CVs for the PD 
fi xed effects relative to the SEQ designs (      �    p  o  p  3        ,       �    p  o  p  4        , and 
      �    p  o  p  5         in  Figure 3 ). We also note that many of the random 
effect parameters (particularly      d  3        and      d  5       ) are very poorly 
estimated by all designs. This indicates the inadequacy of 
these designs to identify these parameters, which could be a 
result of the small population sample size.   

 The percentage difference between the SIM and SEQ popu-
lation designs is shown in  Figure 4 . The percentage differ-

ences show that, for the PD fi xed effects       �    p  o  p  3        ,       �    p  o  p  4        , and 
      �    p  o  p  5        , the predicted CVs for the SIM designs are approxi-
mately 20% to 25% better than the SEQ designs. Given the 
large predicted CVs for the PD random effects, we assume 
that the percentage differences shown for these parameters 
are relatively insignifi cant from a practical standpoint.   
 Especially of note for the PK CV differences is the marked 
improvement of the SIM designs when the designs have 
many PD samples but only 1 PK sample. In  Figure 4  we can 
see that for both the      1   p  k        -     3   p  d         designs and the      1   p  k        -     2   p  d         designs, 
the difference between the SIM and SEQ designs is much 
greater than for the other design strategies. This fi nding 
seems to indicate that the PD measurements in a SIM design 
can help mitigate the poor estimation of PK parameters that 
we see in low sample number designs. 24  We also note that 
the SIM designs consistently predict better (although by just 
2%-10%) CVs for the PK parameter values.  

  Simulation Studies 
 To investigate further the CV differences we have seen, we 
evaluate the designs through 200 simulation/estimation 
experiments. Some of these experiments resulted in poor 
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  Figure 18.    Sampling times for each design considered in Model 4. For each design, all sample times from all individuals are plotted 
together on one line. The left fi gure shows the PK sample times and the right fi gure shows the PD sample times. ( � )- SEQ STD 
optimal times, (*)- SEQ population optimal times, (•)- SIM population optimal times. The population model mean PK and PD 
response curves are shown above their respective sampling times.   
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parameter estimates (due mostly to estimation termination, 
or estimated parameter values that were on a search region 
boundary) and were discarded in subsequent analysis. 
  Figure 5  shows the number of simulation studies used to 
compare the various designs. The fi gure also gives an idea 
of the robustness of the designs in parameter estimation; 
many discarded simulations indicate a lack of robustness. 
The designs for Model 1 appear to be fairly robust.   
 The estimated parameter values for      d  2       ,       �    p  o  p  3        ,       �    p  o  p  4        , 
and       �    p  o  p  5         are shown in  Figure 6  and their bias and RMSE 
are shown in  Figure 7 . We examine these parameters 
 values via our simulation/estimation procedure because 
they had the largest CV differences in the asymptotic 
FIM comparisons. We note the high degree of bias in the 
      �    p  o  p  5         para  m eter estimates, which are perhaps not surpris-
ing given that the FIM predicted CV values for this 
parameter were so high (see  Figure 3 ) and that the 
     C   50         parameter is often very hard to estimate, especially 
in designs with very few samples per subject. It is clear 
from the box plots and RMSE calculations that the vari-
ance of the parameter estimates increases as the total 
number of PK and PD samples decreases. It also appears 
that, for most designs, the difference in variance is small. 
For design strategy      1   p  k        -     1   p  d        , the design appears to be inad-
equate to accurately determine model parameters. The 
differences between the SIM and SEQ designs seen in 
asymptotic FIM predictions are not as evident in the 
 simulation/estimation studies.       

  Model 2: Mono-exponential PK, Effect Site, Emax PD 
  Optimal Designs 
 We computed optimal designs for each of the design 
 protocols shown in  Table 2 . The sample times for all 
 individuals for each design ( Figure 8 ) reveal no difference 

between designs in the PK samples. For the PD sample 
times, there seems to be an increase in spread around 30 
to 45 hours as the total number of samples in the design 
increases.   

  Figure 9  compares the asymptotic CVs for the designs 
where all 3 design types could be used. There are differ-
ences between the designs in the       �    p  o  p  5         and       �    p  o  p  6         parameters. 
However, there does not appear to be a clear pattern to these 
differences. Asymptotic CVs of the random effect variances 
are not compared because the STD (non-population-based) 
design method does not incorporate them for determination 
of the design.   

  Figure 10  shows the asymptotic CVs predicted by the optimal 
FIM for the SIM and SEQ population designs. As with  Figure 
9  we again see discrepancies between the designs in predicted 
CVs for the      C   50         and      k   e  o         parameters (      �    p  o  p  5        ,      d  5        and       �    p  o  p  6        ,      d  6       , 
respectively). There is a consistent pattern in which the SIM 
designs are better for the 1-6, 2-5, and 1-5 protocols, while the 
SEQ designs are better for the 2-4 and 1-4 protocols. It is not 
clear why this pattern emerges, although we note that the larg-
est difference between design points in  Figure 8  is also within 
these same designs. As with Model 1, the designs explored for 
this model predict very large CVs for many of the PD random 
effects (     d  3       -     d  6       ). This fi nding indicates an inadequacy of these 
designs to estimate these parameters.   

 The percentage difference between the SIM and SEQ 
 population designs (    (  C   V   s  i  m     –   C   V   s  e  q    )  /  C   V   s  e  q        ) is shown in 
  Figure 11 . We see up to a 55% difference in estimating the 
CVs for 2 of the PD fi xed effect parameters. Given the large 
predicted CVs for the PD random effects, we assume that 
the percentage differences shown are relatively insignifi cant 
(the CVs are all actually unacceptable).   

 The percentage differences for the PK parameter CVs show 
that, as with Model 1, the SIM designs consistently predict 
better (although only by 0.1-7%) CVs for the PK parameter 
values. It is again interesting to note that the designs with 
many PD samples and only 1 PK sample show a much 
greater difference (in favor of the SIM designs) than do the 
other design strategies, pointing to the potential value added 
by PD samples to PK estimation.  

  Simulation Studies 
 To further investigate the CV differences seen between the 
SEQ and SIM CVs for some of the PD fi xed effects and the PK 
parameters, we evaluate the designs that show the largest dif-
ference through simulation/estimation experiments. For each 
design considered, the estimated parameter values for      d  1       ,      d  2       , 
      �    p  o  p  5        , and       �    p  o  p  6         for 200 simulations are shown in  Figure 12 , 
and the bias and RMSE of these parameter estimates are shown 
in  Figure 13 . For this model, no estimated parameter values 
were discarded, indicating a more robust model than Model 1.     

  Figure 19.    CVs for the SIM, SEQ, and STD 3  pk  -6  pd   designs 
considered in Model 4.   
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  Figure 20.    CVs for the SIM and SEQ population designs considered in Model 4. (*)- SEQ population optimal designs, (•)- SIM 
population optimal designs.   

 For the PK parameters shown (     d  1        and      d  2       ) there are clear 
differences in variance between design strategies (refer to 
the box plots and RMSE). However, there is very little dif-
ference between the SIM and SEQ designs with the same 
design strategy (ie, the same number of PK and PD sam-
ples). Differences between the SEQ and SIM designs are 
evident for the PD parameters shown (      �    p  o  p  5         and       �    p  o  p  6        ), with 
the same pattern seen with the FIM asymptotic predictions. 
For some design strategies the variance (RMSE and box 
plots) is better for the SEQ design, and for other design 
strategies the variance is better for the SIM design. It is not 
clear why the designs have this characteristic and more 
investigation is needed to elucidate the differences between 
the SIM and SEQ designs in this case.   

  Model 3: Two Compartment PK, No Effect Site, Emax PD 
  Optimal Designs 
 We computed optimal designs for each of the design proto-
cols shown in  Table 3 . The sample times for all individuals 

for each design ( Figure 14 ) reveal little difference between 
designs in the PD samples. For the PK sample times there 
seems to be much variation for the samples between 0.3 and 
0.7 hours. However, when both designs have the same num-
ber of PK and PD samples, there is little difference between 
the SIM and SEQ design times.   

  Figure 15  reveals little difference between the asymptotic 
CVs for the designs where all 3 design types could be 
used.   

  Figure 16  shows the asymptotic CVs predicted by the opti-
mal FIM for the SIM and SEQ population designs. We see 
few differences between the designs. The designs explored 
for this model predict very large CVs for many of the ran-
dom effects (    d   →       ). This indicates the inadequacy of these 
designs to estimate these parameters.   

 The percentage difference between the SIM and SEQ popu-
lation designs is shown in  Figure 17 . The main feature this 
result seems to show is the slight change for the worse in 
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estimating the PD random effects using SIM designs. How-
ever, given the large predicted CVs for the PD random 
effects, we assume that the percentage differences shown 
are relatively insignifi cant. As a general comment, we 
believe that the poor estimate quality for the PD parameters 
in most of the models we have selected can be ascribed to 
the single-dose designs we have chosen to evaluate. 
Although not within the scope of the present work, we can 
speculate that a multiple-dose approach in which the PD 
(and PK) profi le is measured for many inputs would provide 
a better chance to improve the quality of the PD parameter 
estimates.    

  Simulation Studies 
 Because there does not seem to be any discernable difference 
between the SIM and SEQ designs, we stopped here in our 
analysis of this model, without further simulation studies.   

  Model 4: PK-PD for the Oral Dosing of Theophylline 
  Optimal Designs 
 We computed optimal designs for each of the design proto-
cols shown in  Table 4 . The sample times for all individuals 

for each design ( Figure 18 ) reveal little difference between 
designs within each design strategy (ie, when all designs 
have the same number of PK and PD samples). However, 
there does appear to be quite a bit of variation between 
design strategies.   
  Figure 19  compares the asymptotic CVs for the designs in 
which all 3 design types could be used. What stands out in 
this analysis is the poor CV prediction using the STD 
non-population-based optimal design for 3 of the PD fi xed 
effects       �    p  o  p  7        ,       �    p  o  p  8        , and       �    p  o  p  9        . There also seems to be a 
large difference between the SIM and SEQ CV prediction 
for these parameters; the SIM design yields much better 
results. We note, however, that the STD design does seem 
to do somewhat better than the SEQ or SIM designs in 
 predicting the other fi xed effect parameters in the model 
(      �    p  o  p  1        -      �    p  o  p  6        ).   
  Figure 20  shows the asymptotic CVs predicted by the opti-
mal FIM for the SIM and SEQ population designs. From 
this fi gure we again see that the SIM CVs for 3 of the PD 
fi xed effects,       �    p  o  p  7        ,       �    p  o  p  8        , and       �    p  o  p  9         are predicted to be 
smaller than in the SEQ designs. We also see some other 
differences. First, again we note the PK CV differences, 
especially in designs with high PD sample numbers and 1 

  Figure 21.    The Model 4 PK parameter percentage difference between the CVs predicted by the SIM and SEQ population optimal 
designs. A negative value means the SIM design predicts a smaller CV. The top 2 plots show the PK fi xed effects CV differences; the 
bottom 2 plots show the PK random effects CV differences.   
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  Figure 22.    The Model 4 PD parameter percentage difference between the CVs predicted by the SIM and SEQ population optimal 
designs. A negative value means the SIM design predicts a smaller CV. The top 2 plots show the PD fi xed effects CV differences; the 
bottom 2 plots show the PD random effects CV differences.   

PK sample. Second, we note the apparent improvement of 
some PD random effect CVs in the SEQ designs, compared 
with the SIM designs. However, we also note that many 
of the random effect parameters (particularly      d  7       ) are 
very poorly estimated by all designs. This may indicate 
the inadequacy of the sample size to identify these 
parameters.   
 The percentage difference between the SIM and SEQ popu-
lation designs is shown in  Figures 21  and  22 . For the PK 
parameters ( Figure 21 ), we see very clearly the same effect 
as in Models 1 and 2; namely, that the designs with many 
PD samples and only 1 PK sample show a much greater dif-
ference (in favor of the SIM designs) than do the other 
design strategies. In this model the effect is especially clear 
for       �    p  o  p  1         (in particular, design strategies 1-6, 1-5, 1-4, and 
1-3 compared with the rest of the design strategies).     
 For the PD parameters ( Figure 22 ), we see that the CVs for 
the fi xed effects all generally favor the SIM design, although, 
in general, only slightly. The PD random effect parameters 
are a mixed bag; the largest difference is for the parameter 
with the largest predicted CVs  

  Simulation Studies 
 To investigate further the CV differences seen between the 
SEQ and SIM CVs we evaluate the designs that appear to 
show a difference through simulation. For each design con-
sidered, 200 simulation/estimation experiments were per-
formed.  Figure 23  shows the number of usable parameter 
estimates from the 200 simulations attempted for each 
design. It is clear this model had some problems estimating 
the simulated data, which demonstrates that this model is 
less robust than the other models considered in this work. 
However, this lack of robustness is not unexpected; in their 
study describing model development, Holford et al 37  make 
repeated reference to the numerical diffi culties they 
encountered.   

 The estimated parameter values for       �    p  o  p  1        ,      d  4       ,       �    p  o  p  7        ,      d  7       ,       �    p  o  p  8        , 
and       �    p  o  p  9         are shown in  Figure 24 , and the bias and RMSE for 
these parameters are shown in  Figure 25 . Overall, it is clear 
that at very low sample numbers the designs are inadequate 
to estimate the parameter values (see, for example, the bias 
and RMSE plots for      d  7       , design strategy      1   p  k        -     2   p  d        , where the 
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values are so much larger than the other design protocols that 
we have chosen not to plot them on the same graphs). How-
ever, most of the other designs seem roughly equivalent in 
estimating parameter values. This includes population 
designs that have fewer samples per subject than theoreti-
cally allowed by the STD SEQ design (3-6-Std).     
 More specifi cally, the difference seen in the asymptotic FIM 
predictions between       �    p  o  p  7        ,       �    p  o  p  8        , and       �    p  o  p  9         in the various 
     3   p  k        -     6   p  d         design strategies (standard sequential, population 
SEQ, and SIM sequential) are not evident in the simulation 
studies. Also not confi rmed in the simulation studies are the 
differences seen in the asymptotic FIM predictions between 
the SIM and SEQ variances for parameters       �    p  o  p  1        ,       �    p  o  p  7        , 
      �    p  o  p  8        , and       �    p  o  p  9        . The simulation studies do reveal that the 
SIM designs do better than the SEQ designs in estimating 
     d  7       . However, the parameter is still very poorly estimated for 
all design strategies and the improvements may be practi-
cally inconsequential.    

  DISCUSSION 
 In this work, we have compared SIM population PK-PD 
D-optimal designs to SEQ population designs and STD (no 
random population effects) SEQ designs. We have found 
that, with the same number of samples per individual, there 
is very little difference between these 3 methods of optimal 
design. This indicates to us that population design, and 
especially SIM population design, may not be particularly 
effective for experiments with the number of individual PK 
and PD samples above the theoretical limit of STD non-
population-based designs (ie, the number of fi xed effects in 
the PK-PD model). In our view, the big benefi t of popula-
tion optimal design comes from the ability to design experi-
ments with fewer samples than there are fi xed effects in the 
model. 

 Our results indicate that both SIM and SEQ designs work 
equally well in designing these low sample number experi-
ments. Only when very few samples per subject are used (1 
PK sample and 1 PD sample, for example) will these design 
methods have diffi culty. There is some scant evidence in 
this work to suggest that SIM designs may outperform SEQ 
designs in certain cases (Model 4, parameter      d  7       ; Model 2, 
some design strategies). However, there were no clear dif-
ferences, and it is not obvious to us how to project these 
small differences into some general rule. 

 Often, the predicted CVs from the FIM for the SIM optimal 
designs did appear to do better than the SEQ designs, espe-
cially for the estimation of the PK parameters and the PD 
parameter fi xed effects. However, when we tested these dif-
ferences in simulation/estimation studies, both design strat-
egies appeared to do just as well (or just as poorly for the 
PD random effects, likely owing to the fact that only one 
dose level was used in the experiments). The disappearance 
of these differences is likely because the inverse of the FIM 
is only an  asymptotic  approximation to the covariance 
matrix of the estimated parameters. In the studies examined 
in this work we are, in fact, far away from the assumed 
asymptotic limit of many individuals with many samples 
per individual. As a result, it is important to test the results 
that the FIM provides through simulation, and to not just 
rely on the FIM for design inference. 

 It is worth noting that the SIM designs were expected to 
result in less accurate PD parameter variances because the 
PK parameters in the PD model were not assumed to be 
known (as was the case with SEQ designs). Our results do 
not support this prediction. Both the SIM and SEQ designs 
had very similar results for the PD parameters. 

 We also note that, for both SIM and SEQ design techniques, 
if only 1 PD (or PK) measurement is made then the result-
ing variances for the PD (or PK) parameters will be much 
worse than for designs with more PD (or PK) measure-
ments. This appears to support an observation we made in a 
previous study 24  that 1 sample per individual in a PK exper-
iment may lead to an inadequate design protocol. Although 
1 PD (or PK) sample per individual and many PK (or PD) 
samples per individual may be adequate, there is signifi cant 
improvement in the PD (or PK) parameter variances if more 
PD (or PK) samples are taken. 

 Our results suggest that SIM and SEQ population design 
approaches are equally effective when using models in 
which the between-subject correlation between the PK and 
PD parameters is not explicitly accounted for in     D       (we 
assumed that this matrix, the variance of the random 
effects, was diagonal; in NONMEM this means a diagonal 
omega matrix). It would be interesting to explore the case 
in which PK parameters are directly correlated with PD 
parameters in terms of population variability. A reviewer 

  Figure 23.    The number of simulation/estimation studies used to 
compare the various designs for model IV. Two hundred 
simulations were attempted for all designs, but some parameter 
estimates were subsequently thrown out.   
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of this article has pointed out that a good test model might 
be a target-mediated drug disposition model such as in 
Mager and Jusko, 38  although our software is not capable of 
handling such a complex model at present. Work is ongo-
ing in this area. 

 Finally, we would like to point out that there are experimen-
tal procedures in which SEQ designs could not be used and 
SIM designs would have to be employed. For example, in 

PK-PD experiments in which both the PK and PD sampling 
times must be taken simultaneously, SEQ designs would be 
impractical. First would be computing the optimal sampling 
times of the PK experiment. Then, because the PK and PD 
sampling times must be identical, the PD sampling times 
would be fi xed to the optimal PK times. Thus, the PD 
 sampling times would be computed without any informa-
tion about the PD model. In contrast, SIM optimal design 
of the same experiment would allow for both PK and PD 

  Figure 24.    Box plots of parameter estimates for Model 4 using the design strategies outlined in  Table 4 . The dotted horizontal line is 
the true parameter value used in the simulations.   
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information to dictate the placement of the optimal sam-
pling times.  
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